EUV Resist Material and Process Development at EIDEC

<u>Eishi Shiobara</u>, Norihiko Sugie, Toshiya Takahashi, Yukiko Kikuchi, Noriaki Fujitani, Julius Santillan, Minoru Toriumi, Motoharu Shichiri, Hiroyuki Tanaka, Shunko Magoshi and Toshiro Itani

EUVL Infrastructure Development Center Inc.

Outline

- 1. Introduction
 - Previous Work on EUV Resist Material and Processes
- 2. Update of the EIDEC Standard Resist
- 3. Analysis of the Origin of RLS Trade-off on EUV Resist
- 4. Fundamental Study of Development Process
- 5. Summary

Introduction

Previous Work on EUV Resist Material and Processes

- 1. Selection of EIDEC Standard Resist (ESR1)
- Novel rinse process for pattern collapse prevention and LWR reduction
- 3. Fundamental study of development by HS-AFM

	osure mber
loader	Wafer loader
Source (Xe DPP)	Wafer track

Small Field Exposure Tool (SFET)

ESR1		
Resolution (nm)	23	
LWR (nm)	7.4	
Sensitivity (mJ/cm²)	14	

	1 1 6
	HAI!
	All
23nm	19
E-21111 E	
	技能

N.	Sugie	et.,	al.,	EUVL
Syl	mpo.20)12		

	DIW	Surfactant Rinse
Resolution (nm)	26	24
Sensitivity (mJ/cm2)	20.0	19.4
30nm L/S after Rinse (LWR)	(6.2nm)	(6.2nm)
30nm L/S after Post Rinse Bake (LWR)	(6.6nm)	(4.8nm)

E. Shiobara et.	al SPIE A	AL 2013

Resist	PHS-based	Hybrid
LWR (nm)	7.4	6.8
A. 61	CD: 100%	100%
After devlop.		450
After	100%	160%
rinse	400	
After	100%	101%
drying		

J. Santillan et. Al., EUVL sympo.2012

Topics of Resist Material/Process Development

- 1. Update of the EIDEC Standard Resist
 - Focusing on negative tone development resist
- 2. Analysis of the Origin of RLS Trade-off on EUV Resist
 - Simulation study on the effect of material composition
- 3. Fundamental Study of Development Process
 - Analysis by High Speed AFM (HS-AFM)

1. Update of the EIDEC Standard Resist

- Positive tone resist
 - **Motivation**
 - Establishment of RLS balance
 - ⇒ ESR2
- Negative tone development resist
 - **Expectation**
 - High sensitivity for hole and/or trench patterns
 - Improvement of LWR
 - ⇒ ESR3

Process Investigation for NTD Resist

SFET Illumination : Annular Resist Thickness : 50nm

Pattern Collapse of NTD resist was improved by the application of under layer.

Takahashi et. Al., SPIE AL 2013

New EIDEC Standard Resists

SFET Illumination : Annular Resist Thickness : 50nm

Resist		ESR1	ESR2 (New: Posi)	ESR3 (New: Nega)
Resolution	(nm)	25	26	28
LWR	(nm)	6.9	7.0	5.7
Sensitivity	(mJ/cm ²)	16.2	14.5	24.1
Top-Down SE 30nm L (Mag. 20	_/S			

New standard resists; ESR2 & ESR3 were selected.

Topics of Resist Material/Process Development

- 1. Update of the EIDEC Standard Resist
 - Focusing on negative tone development resist
- 2. Analysis of the Origin of RLS Trade-off on EUV Resist
 - Simulation study on the effect of material composition
- 3. Fundamental Study of Development Process
 - Analysis by High Speed AFM (HS-AFM)

Simulation Protocol: Probability density model:

In this study, we simulated focused on probability density model.

LER vs. resist reaction parameters

Constant f_{LER} region: High de-protection reaction efficiency, short acid diffusion length, and smooth development characteristics are necessary to break the RLS trade-off.

Large stochastic region: High absorption platform will reduce LER.

Topics of Resist Material/Process Development

- 1. Update of the EIDEC Standard Resist
 - Focusing on negative tone development resist
- 2. Analysis of the Origin of RLS Trade-off on EUV Resist
 - Simulation study on the effect of material composition
- 3. Fundamental Study of Development Process
 - Analysis by High Speed AFM (HS-AFM)

Improvements on HS-AFM Analysis

High resolution scanner Ultra-sealed for solvent dev. Cantilever/solution holder Optimized for more stable scanning with solvent dev.

Improves solution-transfer stability during analysis Auto reflux system Manual injection

Auto reflux system

Analysis technique was customized for EUV resist characterization.

Dissolution Phenomenon of Dense L/S pattern

- Dissolution characteristics of patterns narrower than 32nm hp L/S obtained.
- Swelling characteristics observed for all pattern sizes.
- Scanning stability issues is still remaining as shallow trenches are formed.

Development Phenomenon of NTD Resist

 Smooth patterns resolved with very minimal swelling of dissolving areas on negative tone development. P-RE-53:Julius Santillan

14

Summary

- EIDEC selected New Standard Resist ESR2 and ESR3 with good balance of lithographic performances.
- The origin of RLS trade-off on EUV Resist was analyzed by simulation of the effect of material composition.
- By using HS-AFM, 32 nm dense pattern and negative tone development resist was successfully observed.

Acknowledgements

This work is supported by New Energy and Industrial Technology Development Organization (NEDO).

We would also like to thank:

Prof. Kozawa for the valuable technical discussions and advices.

EIDEC member companies for the continued support. Material suppliers for supplying the experimental materials.

END